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Background

� NASA Aeronautics Research Mission Directorate (ARMD) vision for aeronautical research that 
encompasses a broad range of technologies to meet future needs of the aviation community

� Recent technology advances in sensors, networking, data mining, prognostics, and other 

analytic techniques enable proactive risk management for National Airspace System 

(NextGen)

� Technology convergence of multidisciplinary research to develop transformative concepts 

and to enable a safe and efficient aviation system 

� Systematic training of next generation engineers and workforce pipeline for future aerospace 

industries and research 



Objectives

� Real-time system-wide information fusion methodology for 
prognostics and safety assurance of the NAS

� Self-identified technical challenges (TC) and objectives

o TC 1: Develop an extensible community-based NAS air traffic simulation system incorporating data-
derived vehicle/subsystem level failure/fault models that can be used for system-wide safety 
assessment  and integration with training simulations

o TC 2: Determine information sources inventory associated with current ATM operations, model 
human ATM performance in simulator, and develop real-time sensors of human performance

o TC 3: Determine faults and early damage indicators in the subsystems during ground and in-air 
fleetwide operations utilizing state of the art multiscale, multimodal sensors, data mining, feature 
extraction and classification

o TC 4: Uncertainty quantification, verification and validation, and risk assessment tools for 80% 
increase in computational speed and 60% increase in confidence in risk assessment compared with 
existing approaches

o TC 5: Integrated diagnostics, prognostics, probabilistic modeling, and simulation tools for 50% 
increase in accuracy compared with existing approaches



Proposed methodology and tasks

� Highly multidisciplinary research themes 
are integrated together

� Seven major tasks:
• Task 1. System-wide air traffic modeling and failure simulation

• Task 2. Multi-modality safety monitoring, detection and data 

analysis

• Task 3. Human system integration

• Task 4. Uncertainty management and risk assessment

• Task 5. Information fusion and prognostics

• Task 6. Verification, validation, and safety assurance

• Task 7. Integrated education, research, and demonstrationSchematic illustration of the proposed major 

research themes



Information fusion – Bayesian 
Entropy Network (BEN) framework

� Integrate multiple types of information 

among multiple domains within the 
airspace system

� Bayesian Entropy Network (BEN) –
based information fusion for Data, 

Experiences and Knowledge (DEK)

Entropy term for abstracted knowledge, physical 

constraints, and expert opinions

� Hybrid data-based and physics-based 
prognostics

� Assist the risk assessment and 

decision-making for safety assurance

( ) ( ) ( ) ( )θβθµθµθ gexp ⋅⋅′⋅∝ |



Information fusion – classification for 

runaway incursion

� Adding entropy information:

� Expert linguistic information 
representing historical experiences

1. When the taxi clearance communication error is on the 
ATC side, the cause for runway incursion is more likely 
to be cross runway without clearance.

2. LUAW communication error can only lead to and is the 
only reason for attempt take-off without clearance

…..

� Expressed as constraints on 
expected value of the posterior 
distribution
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� Fuse machine learning models plus expert knowledge (fault trees)

� Convert existing system fault trees to Bayesian networks, instead of building from scratch

� Automate the conversion from fault tree to Bayesian network

Fault tree 
instance model

Fault tree meta 
model

conforms to

BN instance 
model

Automated 
conversion

Bayesian network 
metamodel

conforms to

Updated BN 
instance model

Changes from the expert (addition of nodes)

Posterior 
distributions

Observation data, Automated calibration

From expert Fault tree instance model

JSON representation

FT to JSON plugin

Bayesian network instance model

JSON to BN plugin

Updated BN model

User changes

PyMC model in python
Model Calibration

Plotting

BN analysis plugin

Aircraft self-
separation example

Nannapaneni & Mahadevan, 
AIAA Aviation 2018

Information fusion – avoid mid-air 

collision



Information fusion – prognostics and 

safety metrics

� Simulating accidents for landing on taxiway 
using NATS 

� Update the trajectory using ADS-B information 
and BEN

� Predict the landing point at the airport and confidence level

� Prognostics for potential collision of any pair near terminal region



Air traffic simulation – NATS

� Community-based software for formulating and analyzing NAS safety prognostics problems under 
realistic NAS traffic environments. 

� National Airspace Traffic Safety-Analysis (NATS) Server-Client Software released (Python, 
MATLAB, Java interfaces)

� 55 Airports in the NAS with all the gates, taxiways, runways, approach, go-around, and 
departure procedures

� Terrain Profile for the Contiguous United States

� NOAA wind and convective weather

� Multiple application examples and software demos

� Interface with any user-defined real-time simulation 

� Human Pilot/Controller error models

� 2018 PHM Conference paper summarizing the software status Schematic Illustration of NAS Air Traffic Prediction and 

fault/Failure Simulation
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NATS

NATS Server

Internet

Remote Server

Pilot-in-the-loop 
Simulation(s)

Controller-in-the-loop 
Simulation(s)

FAA, NOAA 
Data Feed

Flight Simulator(s)

User n
(Linux, Windows, Mac)

Linux OS

Air traffic simulation – real-time 

cloud-based computing



Air traffic simulation – information 

flow

NAS 

Safety 

Metrics

. Accident & 

Incident 

Database

NAS, 

Airport , 

Terrain 

Database 

(FAA, USGS)

Nominal Surface, Terminal, En Route Controller Models

Controller & Communication Error Models

Aircraft Flight Plans

Nominal Pilot and Flight Deck Automation Models

Pilot, Communication, Navigation  & Automation Error Models

Aircraft Dynamic Models
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Physics
(State-space 
model)

Deep Residual 
RNN

(DR-RNN)

Physics-based 
Learning

(using 2-layer DR-
RNN)
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Air traffic simulation – hybrid learning 

for aircraft dynamics

DR-RNN (step 
size = 0.1 s)

RK (step size = 
0.002 s)

RK (step size = 
0.005 s)

Computation time 
(s)

7.4 605.4 241.1

Average prediction 
error

2.60e-4 3.78e-4 5.72e-4



Air traffic simulation – automatic 

weather avoidance

⦁ Objectives:

� Develop an automated trajectory prediction algorithm for arbitrary

weather cell shapes at the pixel level

� Include weather dynamics and forecasting uncertainties for planning

� Combine simple geometric models and CNN-based learning to understand

the decision making of pilot and controller

Raw weather image Fast Marching Map

Probabilistic decision 1

Probabilistic decision 2



� How do human factors (e.g., SA, cognitive load) 
of ATCs interact with factors in the NAS to affect 
ATC performance (operational errors) and a safe 
and effective NAS?

� Need access to real-time data that provides 
information on problematic human states that 
may lead to operational error� Communication 
data

+

Situation 
awareness

Cognitive 
Workload

Fatigue…

Density

Separation…

Weather

Air Traffic Controllers Operational Errors Safe & 
Effective NAS

Real Time Communication Data as a Surrogate
(voice and data communications)

Human system integration– human 

factors and operational error



� Communications data can serve as a 
sensor for the human part of the NAS

� Changes in the ATC-pilot state may 
correspond to changes in 
communication patterns which can 
signal potential operational errors/risk

We are addressing this hypothesis through:
• Literature Review
• Existing ATC voice comms
• SWIM data
• Simulation (in which we can push the boundaries of ATC performance)

Notional diagram depicting patterns of communication 
changing over time with other parts of the system

Human system integration –

hypotheses for testing



� 12 Experienced (retired) and inexperienced (students) ATCs

� Up to 4 pseudo pilots (students) each controlling 4-8 planes

� Simulated approach scenarios 

� Baseline normal conditions and increasing traffic density

� Traffic density – 4-32 planes per sector

� Complicating events

� Separation issues

� Loss of engine

� Pilot miscommunication

� Measures

� ATC Operational Error – breach of separation limits

� Measures
� Voice Communication (patterns over time – detect change)

� Volume – how much communication over time

� Flow – who talks to whom patterns

� Voice – pitch, volume changes over time

� Facial Expression – cameras and affective software labeling

� Eye blink rate (Pingbo Tang)

� Keystrokes/Data comm

Human system integration – design of 

ATC experiment



� Voice Recognition for Air Traffic 
Simulators (VORATS)

• Simulator independent 

• Automatic recording and translating, self-triggering

• IoT with distributed computation

• Easily expandable ( N x Pi)

• Automatic recognize the people (with Pi ID)

• Data with time stamp for integration

� Fulton Undergraduate Research Initiative 

(FURI) project (pending)

� Integrated research and student 

education

Human system integration – VORATS

$35 $25 $25 $10 $4

+

Total 
$99



Data analytics – text mining for safety 

reports

Validation Accuracy Training Efficiency Explanation

Linear SVM 0.632 Efficient Easy

Non-linear SVM 0.623 Efficient Hard

MNB 0.515 Efficient Hard

GBDT 0.659 Time-consuming Easy
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Task 1: Classify the states in which the accident happened Task 2: Classify the actual causes which led to the accident 

Problem Definition: Using 2246
accident Reports from NTSB (Part
121) to accomplish two tasks:
1. Task 1: Classify the states in

which the accident happened
2. Task 2: Classify the actual

causes which led to the
accident

Experiment Process: 
4 machine learning algorithms:
Linear SVM, Non-linear SVM,
Multinomial Naïve Bayes (MNB),
Gradient Boosting Decision Tree
(GBDT).

Conclusion: Linear SVM and
GBDT are the optimal models
for our tasks, in terms of the
tradeoff among accuracy, efficiency,
and explanation capabilities.



Accident state indicators Aircraft issue indicators
� Task 1: The indicators whose bars are 

marked red are taxi, taxiway, pushback, 
gate, ramp and land, which are intuitively 
relevant to our classification task. 

� Task 2 (aircraft issue as an 
example): Similarly, the keywords with 
red bars are relevant words to this issue. 
Examples include gear, nut, trunnion, 
land, tire, march, carcass, touchdown and 
overhaul, which are intuitively relevant 
key indicators to identify Aircraft issues 
for accident reports. 

Conclusion: Our machine learning models match our intuition by using highly relevant features 
instead of using the metadata from the reports in the database. 

Data analytics – automatic safety 

indicator extraction



A Novel Model for Learning Representations from Imbalanced Data
� A novel random walk model named Vertex-Diminished Random Walk
� It encourages the random particle to walk within the same class, leading to more accurate node-context 

pairs
� Semi-supervised method for learning representations from both label information and graph structure

Existing method:

Poor separability

between classes

ImVerde:

Good separability

between classes

Preliminary Results on NTSB Data Set

Furthermore, we compared the
new embedding features with the
original TF-IDF features. As
shown below, the concatenation
of embedding and TF-IDF
features improves the
classification performance with
linear SVM. And a smaller
parameter C is preferred for the
embedding features compared to
TF-IDF features alone.

Data analytics – imbalanced data of 

NAS safety reports



ASRS
64,573 reports

Four-step Framework
1. Risk-based event outcome categorization
2. Hybrid model construction
3. Probabilistic fusion rule development
4. Map the risk-level prediction to event-level outcomes

� �� � � �� � � � 	 �
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�� 
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Prediction Accuracy

Precision: 81%  Recall: 81%  F1 Score: 81% 

Data Sources
1. Aviation Safety Reporting System

(ASRS)
2. System-wide Information Management

(SWIM) data
3. National Transportation Safety Board

(NTSB) accident analysis reports

Zhang & Mahadevan, 
AIAA Aviation 2018

Data analytics – hybrid model 

assembling



Monitoring and sensing – big picture 

of airside monitoring

� Dimensional reduction – Autoencoder

� Feature extraction for handling critical system parameters

� Anomaly detection in real airline dataset & simulated flight dataset 

Uncertainties due to 
pilot action and 

operation

Uncertainties due to 
Groundside Systems 

Information

Uncertainties due to 
Environmental 

conditions

Uncertainties due to 
Airside Systems 

Information

Information Fusion and Prognostics 

Task Contribution
- Probability characteristics & uncertainty quantification for 

aircrafts with subsystem faults
- Changes to aircraft dynamics due to existence of faults 

- Air traffic system response to aircraft faults



Flight information

� Current model tested with a reduced dataset in cruise
phase for online monitoring using simulated fault cases

Oil
Temp

Engine
#1

Noise 
filtering

Data 
fusion

Linearly independent 
features

Multivariate 
Gaussian 

model

Status of system 
health

Healthy

Faulty

Core
Speed

Fan
Speed

Exhaust
Temp

Engine
#2

Engine
#3

Engine
#4

Uncorrelated 
Var #1

Uncorrelated 
Var #N

Sensing information

Monitoring and sensing 

- anomaly detection



Distribution of global 
safety probability 

Threshold

Anomalies

Core speed

EGT

� 458 flight data investigated

� Distribution of global safety 
probability constructed in 
logscale (threshold set to be -
200) 

� Anomalies in aircraft detected 
in 3/458 flights

Anomaly in sensing signal Aircraft response 

• Identical aircraft dynamics in three detected anomaly cases 

• Drop in path longitudinal acceleration; increases in angle of attack & patch angle

• Pilot reduces power lever angle

Pitch angle

Flight path acceleration

Power lever angle

Angle of attack

Monitoring and sensing – indication 

of pilot behavior



*EAR - Eye Aspect Ratio

Monitoring and sensing – human 

behavior monitoring
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Team level analysis
Indoor trajectories of 
groups of people

Outdoor Site level analysis
Groups of people across job 
site for collaboration analysis

Monitoring and sensing – computer 

vision technique



Data 
Simulated data: NATS

Field data: SWIM (FAA)

Modeling flight trajectory
Bayesian network � state-space model

System states: aircraft position, velocity, heading
System input: wind velocity 

Anomaly detection
Track multiple flights using state estimation
Measured data: position, velocity, heading
Anomaly:

(1) discrepancy between measured and predicted 
aircraft position
(2) separation distance below threshold

Fault diagnosis
• Identify cause of anomalous behavior 

(e.g., wind gust, engine malfunction, pilot 

error)
• Quantify uncertainty in diagnosis

Probabilistic prognosis
• Update state-space model using 

identified faults
• Quantify uncertainty in prognosis

Safety assessment
Determine safety metric and risk 
using probabilistic fault prognosis 

Near-terminal 
safety assessment 
examples

Zhang, Kong, Subramanian,  
Mahadevan, PHM 2018

Uncertainty management – uncertainty 

in diagnostics and prognostics



ATL Air Traffic in BlueSky

[1] S. Balasooriyan, “Multi-aircraft Conflict Resolution using Velocity Obstacles,”
Delft University of Technology, 2017.

The state-space diagram is the
intersection of forbidden and reachable
velocities and defines the set of
Forbidden and Allowable Reachable
Velocities (FRVs and ARVs) [1]

Flight Plan Flexibility (FPF)

State-Space Diagrams (SSDs)

( )
1

( ) ( )

Area FRV
FPF

Area FRV Area ARV
= −

+

In-conflict aircraft
(orange) undergo
conflict detection and
resolution (CD&R)
based their state-
space diagrams to
avoid LoS.

• An FPF close to 0 indicates that most velocities among the
aircraft’s reachable velocities that will result in a LoS.

• An FPF of 1 means that the aircraft may assume any reachable
velocity and not incur any LoS.

• An FPF of 0 means that a LoS is inevitable if no CD&R action is
taken by any other aircraft in the system.

SWIM Flight Plans to BlueSky Scenario

• Create aircraft by ID, 
type, position, and speed 

• Assign origin, destination 
and runway (for ATL)

• Per SWIM modify HDG, 
ALT, SPD

ATL

Uncertainty management – an 

illustration example



� Reasons for positional uncertainty
� Navigation satellite and onboard receiver 

derive the aircraft’s position

� Normal and abnormal (fault) error induce the 
positional uncertainty

Reasons for uncertainty

� Two levels of positional uncertainty 
broadcasted in ADS-B data

30

Level 1: Accuracy

� Position error at 95% confidence level only 
considering normal error

� In ADS-B data, this term is represented by 
NACp (Navigation Accuracy Category for 
position) from 0 to 11.

� The EPU (Estimated Position Uncertainty) is 
position error range denoted by NACp

Level 2: Integrity

� Position error at 99.99999% confidence level 
considering navigation service failure cases

� In ADS-B, this term is represented by NIC 
(Navigation Integrity Category) from 0 to 11

� The Rc. (containment radius) is position 
error range denoted by NIC. 

EPU(NACp)

Rc.(NIC)

95% confidence level

99.99999% confidence level

� Satellite ephemeris 
and clock error

� Ionospheric delay
� Tropospheric delay
� Multi-path error
� Receiver noise

� Satellite fault

�� � ���������� � � � ����������
Position estimation: 

where � �
��
� 
…
�"

, � ∼ %�&, '�

Uncertainty management – uncertainty 

quantification of single ADS-B



� The two aircrafts may view different 
satellite-set at a specific time

� For example:

� Position error correlation
� The aircraft pair position error correlation is 

sharply reduced at real separation of 4nm 
when the sky-plots become different 
(time:03:33:00)

� Monte Carlo simulation (real separation: 5nm)

31
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Uncertainty management – uncertainty 

quantification of a pair of aircraft



� BlueSky was connected with NESSUS® to 
propagate uncertainty with FPF as QoI

� 1000-point LHS was based on probability 
distributions of ADS-B signals for three 
Navigational Accuracy Categories for position 
(NACp) [2]

Variability in FPF due to aircraft position 
uncertainty

NACp Values and Corresponding 
Position Standard Deviation

Propagating ADS-B Uncertainty 
through BlueSky Simulations:

NACp Value
Standard 

Deviation (NM)

Standard 

Deviation 

(degrees)

4 1.0 0.0016

5 0.5 0.008

7 0.1 0.016

[2] Federal Aviation Administration (FAA) (2010) Airworthiness Approval of Automatic Dependent    
Surveillance - Broadcast (ADS-B) Out Systems. AC 20-165.

Uncertainty management – uncertainty 

propagation with simulation 



Arrival and Takeoff Scenario 

Runway Scenario 

Terrestrial objects such as mountains and buildings can 
cause multipath interference, different scenarios 

require different channel models.

The relationship between SNR and 
BER under different K factor

Uncertainty management –

uncertainty from communications



Uncertainty management – uncertainty 

reduction via channel optimization

• Optimal scheduling of data transmissions to minimize the overall tracking 
error

• Significant reduction of uncertainty in the round-robin communication pattern
• Large impact of communication with terrain information for safety evaluation 

on the ground and near the airport



Educational activities and 

achievements

� 30+ students (PhD + MS + undergraduate students) from 7 majors (air traffic management, aerospace engineering, 
psychology, mechanical engineering, computer science, electrical engineering, and civil engineering)

� First MS graduate hired in ATM field

� First undergraduate design competition submitted for Airport Cooperative Research Program  - SMART LINE UP AND 
WAIT SYSTEM FOR AIRPORT

� Fulton Undergraduate Research Initiative proposal – A $99 VORATS system (VOice Recognition for Air Traffic 
Simulators)

� Intergradation with ASU ATM program and PHX controller training program

Fulton Undergraduate Research Initiative Air Traffic Management Program



Project management - team

� Diverse, multidisciplinary team that includes faculty in ASU’s Ira A. Fulton Schools of Engineering 

and collaborators from Vanderbilt University, Southwest Research Institute and Optimal Synthesis 

Inc.

� Big data analysts, applied statisticians, image processors, psychologists, computer scientists, and 

aerospace engineers

� Expertise from information theory, applied statistics, data mining and analytics, risk management, 

airspace software systems, monitoring and imaging, and network science

� Smooth transition from academia basic research to applications of aerospace industry

Team integration flow chart



Research dissemination and 
community impact

� Development of simulation tools 

(NATS) to be used for future 
NextGen research

� Wide dissemination of research 
outcomes to aviation community
� Prognostics Analysis and Reliability  

Assessment (PARA) - ATM

� Organize special sessions in 
conference to enhance the 

program impact

� External Advisory Board (EAB) 

that consists of various experts 
from industry, government 

agencies, and academia

NATS PARA - ATM

Open source github sharing



External Advisory Board 
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Jeffrey Panhans, 

Allegiant Air 

Chid Apte, 

IBM
Eric Haugse, 

Boeing 

Stephanie Cope,

Intel
Chuck Farrar ,

LANL

Eric Ji,

Intel

Lou Gullo，

Raytheon

Heinz Erzberger ,

UC Santa Cruz

Habib Fathi,

Pointivo

Lyle Hogg，

Piedmont Airlines 

Roger Mandeville ，

ATAC
Banavar Sridhar,

USRA

Xinzhou Wu ，

Qualcomm

Verne Latham Rob Hunt ,

FAA

• External Advisory Board (EAB) – members from various different disciplines and 

industries
EAB roles: 1) provide feedback and comments on the proposed research and research progress; 2) participate (in 
person or via telecom) in annual project meeting; 3) participate in regular progress teleconferences; 4) provide 
feedback and suggestions on future research directions to address important gaps in the community. 



Conclusions and future work

� Fusing knowledge among multiple domains within the airspace system.

� Creating a multidisciplinary team of big data analysts, applied statistician, image 
processors, psychologists, computer scientists, and engineers.

� Improving air travel safety through complex human-cyber-physical system simulations 
using ultra-fast algorithms for real-time analysis.

� Developing extreme-scale, in-air and on-ground data sources to increase system 
reliability and risk management.

� Integrating multi-level education with K12 Education Outreach Program, Fulton 
Undergraduate Research Initiative, graduate student advising, and pilot training.  

� Close collaboration with aviation industry enables future technology transfer.
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Thanks!
Questions?

40
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